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ABSTRACT

Climate change and increasing water demand in urban environments necessitate planning water utility
companies’ finances. Traditionally, methods to estimate the direct water utility business interruption
costs (WUBIC) caused by droughts have not been clearly established. We propose a multi-driver assess-
ment method. We project the water yield using a hydrological model driven by regional climate models
under radiative forcing scenarios. We project water demand under stationary and non-stationary condi-
tions to estimate drought severity and duration, which are linked with pricing policies recently adopted
by the Sao Paulo Water Utility Company. The results showed water insecurity. The non-stationary trend
imposed larger differences in the drought resilience financial gap, suggesting that the uncertainties of
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WUBIC derived from demand and climate models are greater than those associated with radiative forcing
scenarios. As populations increase, proactively controlling demand is recommended to avoid or minimize
reactive policy changes during future drought events, repeating recent financial impacts.

1. Introduction

Water utility company business interruption costs (WUBIC) refers
to the financial losses a company suffers when its operations are
disrupted, which is characterized by global and regional trends.
On the one hand, climate change, population growth, the non-
stationary nature of climate extremes, and uncontrolled human
development make society more claimant on water (Montanari
et al. 2013). On the other hand, the ever larger mobilization of
water and the use of new supply sources for growing demands is
already seen as an untenable idea (Falkenmark and Lannerstad
2004). Such pressure on water resources inhibits the socioeco-
nomic development of communities (Laaha et al. 2016; Wada et
al. 2013; Van Loon et al. 2016a; Lloyd-hughes 2013).

Droughts have a great impact, mainly because of their broad
geographic coverage, time duration, and lasting damage
(Bressers, Bressers, and Corinne 2016; Smakhtin and Schipper
2008; Van Lanen et al. 2013; Bucheli, Dalhaus, and Finger 2020).
Furthermore, more severe and prolonged droughts are
expected in the future, leading to greater economic conse-
quences, environmental degradation, and loss of human lives
(Shi et al. 2015; Stahl et al. 2016; Freire-Gonzalez, Decker, and
Hall 2017, Balbus 2017, Asadieh and Krakauer 2017;
Prudhomme et al. 2014; Berman et al. 2013; Touma et al.
2015; Ault 2020; Ali et al. 2021). Therefore, it is essential to
create adequate risk perception, aiming to reduce vulnerability,
mitigate the impacts, and build a more resilient and cautious
community to deal with droughts (Mishra and Singh 2010; Nam
et al. 2015; S Bachmair et al. 2016; Liu et al. 2021).

Hydrological drought is defined as a negative anomaly in
surface and subsurface water levels that can extend over a long
time period (Van Loon 2015; Wanders, Van Loon, and Van
Lanen 2017; Mishra and Singh 2010). These negative anomalies
associated with excessive demand can cause disruptions in the
water supply systems (Mehran, Mazdiyasni, and Aghakouchak
2015; Van Loon, Van Loon et al. 2016b; Wanders and Wada
2015). One way water utility companies traditionally prepare
against such anomalies is through supply augmentation (Sahin
et al. 2018). To reduce vulnerability, rethinking the way forward
is required, given the scarcity of new sources (Wanders and
Wada 2015).

In Brazil, from 2013 to 2015, the population of the Sao Paulo
Metropolitan Region (SPMR) experienced the most acute water
crisis in its history (Nobre and Marengo 2016; Taffarello et al.
2016; Coutinho, Kraenkel, and Prado 2015). The 2013-2015
crisis caused a business interruption of nearly 60,000 water-
dependent productive institutions according to the Sao Paulo
Federation of Industries (FIESP), representing almost 60% of the
state’s industrial GDP (Marengo et al. 2015). Among the com-
panies most affected was the Sao Paulo State Water Utility
Company (SABESP). The total economic damage attributed to
the drought in 2014 was estimated to be between 3 and 5
billion USD (Nobre et al. 2016), including large losses to agri-
culture, but SABESP alone saw an income drop of more than
200 million USD (see supplementary material). Water demand
management has proven to be a viable alternative to support
water security in urban environments (Sahin et al. 2018). Based
on this, SABESP has been implementing price mechanisms to
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discourage water demand during deficit periods. However,
these measures affected the company’s main business, leading
to an important liquid net income reduction compared to
previous years (around 65%, see Supplementary Material), a
major financial crisis in the company (SABESP, GESP 2016;
SABESP 2017c). Therefore, this study proposes an approach to
estimate the WUBIC to reduce financial vulnerability by inte-
grating future climate uncertainty and growing water demand.

The definitions of drought losses or drought costs are
diverse and not fully agreed upon (Freire-Gonzalez, Decker,
and Hall 2017; Meyer et al. 2013; Logar and van den Bergh
2012; Ault 2020; Liu et al. 2021). Drought costs can be separated
across direct, indirect, and non-market costs (Logar and van
den Bergh 2012), from which business interruption costs as
primary tangible costs can be further differentiated (Meyer et
al. 2013), although not configured as ‘due to direct physical
contact’. Despite the diverse range of methods found in the
literature, several are for non-tangible or indirect methods,
specific for the agricultural sector, or economy-wide oriented
(i.e. fit to a broader scale application), which would incur less
precise results in our case. Regarding the impact of reduced
water availability on water utilities (the WUBIC) several
approaches seem adequate, such as market valuation techni-
ques or ex-post evaluations (i.e. comparing changes in GDP or
changes in price between affected and unaffected years).

We tested our approach using a semi-distributed hydrologi-
cal model driven by the outputs of a regional climate model
and projected water demand pressure based on population
growth. We characterize the water deficit through the sever-
ity—duration—frequency approach relating water cost and the
storage system state throughout the running scenarios.

2. Water crisis contextualization and study area

Changes in rainfall trends and temperature extremes in south-
east Brazil, together with user growth, progressively reveal
SPMR water vulnerability (Chou et al. 2014a; Zuffo 2015;
Buckeridge M and Ribeiro 2018; Ussami and Guilhoto 2018).
Severe water shortages were recorded in the SPMR, driven by
precipitation anomalies in 1953-1954, 1962-1963, 1984, and
2001 (Cavalcanti and Kousky 2001; Buckeridge M and Ribeiro
2018). The 1962-1963 event apparently motivated the con-
struction of the main water source of SPMR, the Cantareira
Water Supply System (CWSS) (Nobre et al. 2016). The system
designed to supply the increasing water demand of SPMR
began its partial operation in 1974, and its construction was
completed in 1981 with a 30-year permit to transfer up to 35
m3/s, an amount that has been periodically evaluated since the
last water crisis (Mohor and Mendiondo 2017). The CWSS is
currently administered by SABESP, the main operator of the
water network in the SPMR, and the government of Sao Paulo
state is its main shareholder.

The CWSS is located in Southeast Brazil between the states
of Sao Paulo and Minas Gerais. The rainy season in the CWSS
generally begins at the end of September and ends in March.
During this period, an average of 72% of the annual rainfall
accumulated (Marengo et al. 2015). In hydrological terms, the
2265 km? of drainage area, has historically generated an annual
mean tributary discharge of 38.74 m>/s, regulated by storage

and transfer structures. The system is composed of four inter-
connected dams with a useful total storage volume of 988.8
hm?, arranged to transfer water from the Piracicaba River Basin
to the Upper Tieté Basin (Figure 1). The system was configured
to supply approximately 11 million people in the SPMR prior to
the 2013-2015 crisis (Agencia das Bacias PCJ, Comités PCJ 2016;
Nobre and Marengo 2016; De Andrade 2016; Marengo et al.
2015; Nobre et al. 2016; PCJ/Comités 2006).

During the 2013-2015 crisis, SABESP undertook reactive
measures to control the consumption in the SPMR (Marengo
et al. 2015) such as: Extraordinary increases of water tariff
prices; programmed water cut-offs; economic bonuses and
penalties to ration water consumption; network pressure
reduction; water use from ‘dead storage’ (when storage level
is below extraction by gravity and needs to be pumped); social
awareness campaigns to inform people about shortages; and
water distributed by tankers in the most critical areas to provide
the human Basic Water Requirement (BWR) for human needs.

3. Methodology

The methodology was structured into three modules, which are
summarized in Figure 2. In the first module, the Water
Evaluation and Planning tool (WEAP) (Yates et al. 2005) is
used for hydrological simulation of water scenarios (historical
and projections) based on the RCM Eta-INPE datasets.

In the second module, the water deficit is defined from the
WEAP historical simulation dataset and the assumptions of
stationary (SD) and non-stationary (NSD) water demand scenar-
ios to follow the severity—duration-frequency curves (SDF)
approach (Sung and Chung 2014). The threshold level method
(TLM) was applied to depict the main characteristics of drought
events (mean duration and mean severity) over the historical
period for the two proposed demand scenarios (Heudorfer and
Stahl 2017; Rivera, Araneo, and Penalba 2017). Drought impact
analysis is usually structured based on indices to measure the
event magnitude and its consequences (Cambareri 2017). In
this case, we develop the supply warranty time index (SWTI), on
which an empirical relationship is established between the
historical water deficit and extraordinary increases in water
tariff prices. The SWTI is the ratio between the number of
days in which all user sectors’ demand is met and the duration
of the (intra-annual) drought event. As we show later on, we
identified no water shortage up to the first 90 days of any
drought event due to the system capacity; thus, SWTI is only
below unity after 90 days of drought.

In the third module, the water utility profit losses are esti-
mated under water deficit projections, driven by climate pro-
jections for the period of 2007-2040, 2041-2070, 2071-2099,
and the water demand assumptions (SD-NSD).

3.1. Model calibration

The WEAP is an integrated water resource planning tool used to
develop and assess scenarios that explore physical changes
(natural or anthropogenic) and has been widely used in various
basins worldwide (Yates et al. 2005). Climate-driven models
such as WEAP provide dynamic tools by incorporating hydro-
climatological variables to analyze, in this case, a one-
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Figure 1. System structure composition and catchment areas of the ‘cantareira water supply system’. Jaguari-Jacarei (B1, B2, B3, B41, B42, B5 and B8), Cachoeira (B6, B7
and B9), Atibainha (B101 and B102), and Paiva Castro (B11, B12; B13 and B14). panel A: discharge gauge stations; panel B: rainfall gauge stations; panel C:

meteorological gauge stations and panel D: centroid of the eta-INPE (RCM) grid.

dimensional, quasi-physical water balance model, which
depicts the semi-distributed hydrologic response through the
surface runoff, infiltration, evapotranspiration (Penman-
Monteith equation), interflow, percolation, and base flow pro-
cesses (Forni et al. 2016).

The hydrological model for the CWSS drainage area
comprises 16 sub-basins with a spatial resolution ranging
from 67 to 272 km? (Figure 1), which defines the natural
discharge produced by the CWSS. The observed hydrologic
data (discharge and rainfalll were obtained from

HIDROWEB' (the National Water Agency database [ANA]),
SABESP, and the Sado Paulo State Water and Electricity
Department [DAEE]. A network of 52 rain gauge stations
and 11 discharge gauge stations was configured, with
inputs and outputs in a monthly time step (Figure 1(a,b)).
Meteorological data from 14 gauging stations (tempera-
ture, relative humidity, wind speed, and cloudiness fraction)
were obtained from the National Institute of Meteorology
and Center for Weather Forecasting and Climate Research
(CPTEC) databases (Figure 1(c)). For the basin
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Figure 2. Methodology structure flowchart.

characterization, we adopted the soil map from (De
Oliveira, Marcelo Camrago, and Calderano Filho 1999)
(scale 1:500,000) and the land use map of 2010 from
(Molin et al. 2015) (scale 1:60,000).

The modeling process was carried out over 12 years,
explained as follows: 24 months as a warm-up period (from
2004 to 2005), 60 months as a calibration period (from 2006 to
2010), and 56-months as a validation period (from 2011 to
2015). Although more extensive periods of calibration and
validation are suggested to better represent hydrological
dynamics (Gibbs et al. 2018), this first trial of warm-up with
calibration and validation seems appropriate with the objec-
tives of the study, restricted to the observed data and assess-
ment periods.

The model was calibrated using a mixed calibration process.
The first calibration approximation was made using the model-
independent parameter estimation and uncertainty analysis
software (PEST) (Doherty and Skahill 2006), followed by refine-
ment using a manual adjustment technique. The following
variables were calibrated: Kc (Crop Coefficient), SWC (soil
water capacity), DWC (deep water capacity), RZC (root zone
conductivity), DC (deep conductivity), and PFD (preferential
flow direction (PFD). The objective functions to measure
model performance, widely used in hydrologic applications,
were the volumetric error percent bias (PBIAS) and the Nash-
Sutcliffe efficiency (NSE) of the logarithmic of discharges
(NSE og), which is more sensitive to low flows (Muleta 2012).

Although the model was delineated as 16 sub-basins, 11 of
these units had discharge information, four of which coincided
with the reservoir entry flow measures (see Figure 1, Jaguari-
Jacarei B5-B8, Cachoeira B9, and Atibainha B102 Subsystems).
To manage water resources, SABESP considers the catchment’s

\4

natural inflows and the demanded downstream flow to esti-
mate the available flow for the SPRM supply. The system opera-
tion is based on the integration of the four reservoirs through a
balance called ‘Equivalent System’, this ES can be expressed as
follows:

n n
ESCantareira = Z QNI - Z WDi (1)
i i

where EScaniareira 1S the available water for withdrawal from the
system, QN is the natural discharge from each reservoir i (sub-
system), and WD is the water demand in each reservoir (includ-
ing downstream supply).

Once calibrated, the WEAP model was driven by the regional
climate model (RCM) ETA-INPE reference period (1961-2005) to
generate the baseline scenario. Details of ETA-INPE are
addressed in Section 3.3.

3.2. Structuring base scenario module

The threshold level method (TLM) is traditionally used to esti-
mate hydrological deficit events from the discharge time series
(Wanders, Van Loon, and Van Lanen 2017). TLM was originally
called ‘Crossing Theory Techniques” and it is also referred to as
run-sum analysis (Sen 2015).

In this study, two monthly time-step thresholds were imple-
mented, defined from the pre-established water demand in the
system (Sung and Chung 2014). Initially, a stationary demand
(SD) threshold of 31 m%/s is defined as equal to the historical
average demand, and another non-stationary demand (NSD)
threshold of 31 to 42 m%/s is defined as a hypothesis represen-
tative of the population growth in the SPRM (IBGE?) (Deusdara-



Leal et al. 2020). Meanwhile, the discharge series are defined
from the WEAP hydrological simulation driven by the Eta-INPE
historical dataset scenarios (baseline period 1962-2005).

Based on the deficit time series (severity in m?) and duration
(days) obtained from the TLM evaluation, the SDF curves were
developed. The generalized extreme value (GEV) frequency
distribution was used to estimate the return periods of the
deficit events. The GEV distribution is useful because it includes
all three types of extreme-value distributions (Tung, Yen, and
Melching 2006). In various studies addressing SDF curve devel-
opment, the GEV distribution is consistent with the datasets of
extremes (Sophie Bachmair et al. 2017; Todisco, Mannocchi,
and Vergni 2013; Sung and Chung 2014). To specify a consider-
able number of events to configure the SDF curves, the deficit
duration was classified into four intervals from 0 days to
31 days, 0 days to 90 days, 0 days to 180 days, and 0 days to
365 days. Thus, the GEV parameters &, a, and p were estimated
using the maximum likelihood estimator (MLE) for the four
duration intervals and return periods of 2, 10, and 100 years.

In Brazil, each state-owned sanitation company has its own
water charging policy, where the vast majority use block tariffs
as a pricing policy, including SABESP (De Andrade Filho, Ortiz,
and de Oliveira 2015; Mesquita and Ruiz 2013). In Sao Paulo
State, the tariff policy system is regulated by Decree 41.446/96,
as well as by services provided by SABESP. For the water tariff
setting, several factors are taken into account, such as service
costs, debtors forecast, expenses amortization, environmental
and climatic conditions, quantity consumed, user sectors, and
economic condition of the user. These user sectors are divided
into residential, industrial, and commercial sectors, and the
value charged for the service is always progressive. In other
words, there is a standard minimum consumption with a fixed
value, and such factors vary the consumption ranges (SABESP
2018). From the total water withdrawn from the CWSS, urban
use is predominant in SPRM, where approximately 49% of the
total is for household needs, 31% is for industrial needs, and
20% is for irrigation (Consoércio PCJ 2013). In this study, we
consider the water withdrawal for domestic and industrial use
in the SPMR, due to the direct dependence of these sectors on
the SABESP water supply network, as well as the supply priority
that the domestic sector has according to Brazilian law during
drought periods (Brasil 1997).

12.9% * ilvaax.*

B Above Average Deficit Duration**(Days)
] Above Average Deficit Volume*** (10"6-m”"3)
H Above Average Adjustmen Rate * (%)
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Urban drought management programs incur costs that
must be assumed to overcome water crises with equity
(Molinos-Senante and Donoso 2016). SABESP in the SPMR,
for example, through price-based policies,® controlled the
consumption rates of users when hydrological deficit sce-
narios were presented in the CWSS. Therefore, during
2014/2015, reactive economic contingencies were imple-
mented, such as increased water tariffs, extra fees, and
price incentives. These had a detrimental effect on the
company’s profit margin (SABESP, GESP 2016; SABESP
2017a, 2016a).

We established a drought revenue loss cost estimation
method based on the market price method (Meyer et al.
2013). Although the financial impacts do not always exhibit a
strong correlation with weather indices (Zeff and Characklis
2013), we developed an empirical relationship between water
price (impacts) and drought (Mens, Gilroy, and Williams 2015;
Grafton and Ward 2008; Hou et al. 2018; S Bachmair et al. 2016;
Guzman, Mohor, and Mendiondo 2020a). Figure 3 shows an
increase in the adjustment rate as a response to periods of
water deficit. Based on the TLM approach, we assessed the
monthly discharge time series under SD (31 m?3/s) from 2000
to 2018 (Figure 3), aiming to associate the drought character-
istics with the adjustment rates of SABESP. The upper part of
Figure 3 shows the deficit duration in blue, and the black bars
represent the extra rate adjustment over the average tariff, in
this case due to climatic conditions during the drought events
between 2000-2018 period. The lower part in pink represents
the deficit volume for each drought duration during the same
period. The Pearson correlation coefficient analysis between
the adjustment rate and drought features did not show a
large difference; the estimated values were 0.453 for drought
duration and 0.481 for drought deficit. Although the correlation
coefficient values were relatively low, the use of these drought
characteristics is useful given the lack of information regarding
drought and its economic impacts on the study area. In this
sense, we adopted the duration of drought characterization, as
it can be a better indicator of perception and social expectation
than the accumulated water deficit volume (Kuil et al. 2016).

Therefore, we adopted an empirical pricing structure
adjusted to scarcity, from the average prices of the bulk
water tariff in 2016 in the SPMR, for the domestic and

Max. 142 “-,
y %

9.2% *

Max. 373.17 ***
-~

2000 2001 2002 2003 2004 2005 2006 2007 2008 2[?09 2?10 2011 2012 2013 2014 20.]5 2016 2017 2018
Time (years

Figure 3. Empirical relationship between CWSS above-average deficit duration (blue-area in days), CWSS above-average deficit volume (pink-area in 10%-m?) and
adjustment above-average adjustments rate (black-bars in percentage). modified from (Guzman, Mohor, and Mendiondo 2020a).
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industrial sectors integrating the resilience that the reser-
voir system can offer (SABESP, GESP 2016b). On the one
hand, during the most severe droughts, an increase in the
water tariff for the following period is expected to be a
management measure. On the other hand, when smaller
deficits are overcome with the water stored in the system,
the increase in tariffs is a consequence of the annual
consumer price index (CPIl) and other tariff updates accord-
ing to the law (SABESP, GESP 2016b). Thus, the approach
requires the following additional assumptions:

e Based on the current average prices for the domestic and
industrial sectors, a base water price was established to
analyze US$ 3.38 per m?, assuming normal supply condi-
tions or 100% water availability.

e From the SDF curve construction intervals (cumulative
drought duration) and three class intervals of the annual
tariff adjustment (6%, 10%, and 17%, see Figure F-1 and
Table F-1 in Supplementary Material F), the water prices
were established.

The analysis focuses on quantifying the impacts of a vari-
ety of drought events by integrating the operational capa-
city of the system (Mens, Gilroy, and Williams 2015). From
the reconstructed and observed flow series of the CWSS
between 1930 and 2016 (ANA/DAEE 2013), flow duration
curves for different historical periods were estimated (see
Supplementary Material, Section G). The curves show a
flow frequency reduction of what is currently extracted
from the system (31 m3/s), denoting a gradual reduction
over time. The flow had a permanence of 56% (Qs¢) for the

regime between 1930-1960 but had a permanence of only
49% between 1960-2016. Additionally, the flow duration
curve 1980-2016 was analyzed as the current state of the
system. This curve showed that the observed average flows
in the years 2014 (8.71 m?®/s) and 2015 (19.71 m?/s) are
equivalent to the duration curve flows Qog and Qg, which
are generally related to hydrological drought phenomena
or low supply.

Our robustness analysis was defined around a pricing
policy delimited for three staggered tariff-adjustments to
face the drought duration scenarios represented by the
SWTI (Figure 4). First, in a scenario of 100% water avail-
ability, the continuous flow balances the water inlet and
outlet in the reservoir network to ensure supply (drought
duration up to 90 days). Second, there is a scenario with
water availability and supply warranty and dependence on
the storage system. In this scenario, the reservoir network
provides resilience during droughts of smaller magnitudes
and durations, maintaining supply with a low tariff adjust-
ment (drought durations between 90 and 180 days). Third,
a scenario with water shortage, and consequently, forced
interruption of supply. In this scenario, the water deficit
prevails with a high tariff adjustment and other savings
measures (drought durations between 180 and 365 days).

Finally, the link between the deficit and company profit
losses due to business interruption during unavailability
water periods is given by means of the SDF curves. The
pricing structure and deficit share the same event dura-
tion. Thus, this approach offers a set of alternatives for
impact analysis of different magnitudes and climate
scenarios.

4 [$3.95® 365 days Drought Scenario 180
SWT;i00%
® SWTI] = ——— - 160
39 g Dd
g © Cantareira FDC 1980-2016 Period | 4,0
3 38 r g ® 180 days Drought Scenario
& B 1[$3.71 L 120%
337 % § E
- 3 o 90 days Drought Scenario 0 =
g a % ¢ Cantareira mean o 100 ;
s 36 1 T E $3.58 historical flow & 2
o & g 8 Q35,5=36.5 m*/s 80 ¢
S35 5 & 2 €3 2
a Egd 2% L 60 &
g %8 £39z ©
£34 o® 582 4333 4 @
] 55 =S85 40
z £ 3 B©BDOJ = 8
g% fad ; 3
3.3 | ; - Q,?Enf— ) Q50=30.3 m /S L 20
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Figure 4. Pricing structure adjusted to scarcity: where SWT 409, is number of days that 100% of supplies can be guaranteed once the drought event has started and Dy
the duration of the intra-annual drought event and FDC is the flow duration curve to CWSS. modified from Guzman, Mohor and Mendiondo (2020).



3.3. Scenario analysis module

Once the WEAP hydrological model has been calibrated
and validated and the relationship between drought and
tariff adjustment has been established, we calculate the
drought impacts (WUBIC) through the management hori-
zons (2007-2040, 2041-2070, and 2071-2099). This calcula-
tion was carried out for cumulative deficit periods greater
than 180 days of drought using the TLM approach for all
WEAP simulations. A drought value of 180 days was
defined considering that, from this duration, the supply
begins to show an important dependence on the CWSS.

To incorporate the uncertainties of climate change
impacts, historical simulations and future projections of
the RCM Eta-INPE model were used. Currently, the RCM
Eta-INPE (Brazilian National Institute for Space Research)
plays an important role in providing information for local
impact studies in Brazil and other areas of South America
(Chou et al. 2014a). The RCM model is nested within the
GCMs MIROC5 and HADGEM-ES, forced by two greenhouse
gas concentration scenarios (RCPs) 8.5 and 4.5 [W/m?] (used
in the IPCC 5th Assessment Report), with a horizontal grid
size resolution of 20 km x 20 km and up to 38 vertical levels
through 30 years of time periods, distributed as follows:
1961-2005 (as the baseline period), 2007-2040, 2041-2070
and 2071-2099 (Chou et al. 2014a; Prudhomme et al. 2014).
It should be clarified that, for the future periods, the growth
in water consumption under the NSD assumption is imple-
mented progressively; that is, for 2005-2040 it is attributed
an average water withdrawal of 31 m3/s, 38 m>3/s for 2041-
2070, and 43 m?3/s for 2071-2099.
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4, Results and discussion
4.1. Hydrological model fit

It is worth noting that the sub-basin areas in this case are
smaller than each cell of the adopted climate model (400
km?), although RCMs are an alternative to downscale the
coarse-resolution GCM, RCM outputs often deviate from the
observed climatological data (Liersch et al. 2016; Kim, Kwon,
and Han 2015; Smitha et al. 2018). Therefore, the historical
simulation and, consequently, the future projections of Eta-
INPE had to be spatially relocated and bias corrected from
observed historical climate conditions (rain and temperature).
For this, the ‘Additive Corrections and Scaling’ method was
used, which is a simple approach that assumes the relative
mean biases between observed data and model projections
(Maraun and Widmann 2018; Smitha et al. 2018).

The hydrological model structure was performed in monthly
time steps and was calibrated and validated following the
procedure described in Section 3.1. Multiple statistical evalua-
tion criteria were used to improve the calibration procedure
(Kumarasamy and Belmont 2017; Gibbs et al. 2018). This is
important because analyzing multiple statistics can provide
an overall view of the model based on a comprehensive set
of indexes on the parameters representing the statistics of the
mean and extreme values of the hydrograph (Moriasi et al.
2007). The equivalent system hydrographs for the calibration
and validation periods are shown in Figure 5. The colors in
Figure 5 represent the classifications suggested by Moriasi et
al. (2007) and are as follows: green for ‘very good’ (NSE > 0.75;
PBIAS < +10%; RSR < 0.50), yellow for ‘good or satisfactory’
(0.75 > NSE > 0.5; £10% < PBIAS < +25%); 0.50 < RSR < 0.60), and
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Figure 5. WEAP hydrographs cantareira Equivalent System (ES) performance criteria for calibration (2006 — 2010) - validation (2011-2015) periods. the calibration and
validation performance criteria for each sub-basin in the system can be found in supplementary material B. — Table B-1.
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red for ‘unsatisfactory’ (NSE < 0.5; PBIAS > £25%; RSR > 0.70).
Moreover, the correlation coefficient (R®) and VE criterion
values close to 1.0, indicate that the prediction dispersion is
equal to that of the observation (Muleta 2012; Krause and Boyle
2005). It is important to note that during the validation period
(2011-2015), most of the recent drought events were simulated
with an acceptable performance, although there was a ten-
dency to overestimate periods of low flow.

Later, in the impact assessment, only the equivalent system
(ES) was analyzed. Among the simulated subsystems, the
Jaguari-Jacarei subsystem contributes to approximately 46%
of the total water production and shows the best modeling
performance statistics, compared to the other subsystems. The
SE discharge projections 2007-2099 forced by the GCM and
RCP scenarios can be seen in the Supplementary Material (Fig.
C-1).

4.2. Droughts severity-duration-frequency and -impact
curves

Figure 6 shows the baseline (historical) scenario results of the
TLM approach for each GCM (Eta-MIROC5 and Eta-HadGEM-ES)
simulations and under the thresholds SD and NSD. In general,
the results driven by Eta-MIROC5 showed the greatest deficits
under the two threshold scenarios. On the other hand, the Eta-
HadGEM-ES simulation through the SD threshold proved to be
an optimistic scenario in terms of low deficits and drought
durations.

The left side of Figure 7 shows the SDF curves for the
historical period scenarios of the GCM and water demand fit
for the return periods (Rp) of 2, 10, and 100 years. It can be
observed from the results that according to the fit data set
(Supplementary Material D), the shape parameter (§) varies
with the drought duration. For a drought interval of more
than 180 days, the probability distribution function (PDF)
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Type | presents a better fit, whereas droughts with duration
intervals of less than 90 days had a better fit to FDP Type lll (see
Tables E-1 to E-4 in Supplementary Material E). Moreover, the fit
diagnostic plots ‘Empirical quantile vs Model quantile’ (QQ-
plot) and ‘Return level vs Return period’ (RR-plot) show the
relationship between the model, the data fit and prediction
capacity (Supplementary Material D). Therefore, in terms of the
quantiles, the QQ plot shows the data trend to follow the
model line in most cases, while the predictive capacity of the
model, represented by the RR-plot, shows a decrease as the
return period increases.

Based on the duration of the drought as a common element
between the CWSS SDF curves and the pricing structure
adjusted to scarcity, the functions of the (SDI) were built. The
right side of Figure 7 shows the intra-annual drought duration
as the progress percentage throughout the year, deficit, and
consequent company profit losses. SDI functions are structured
to analyze the impact under different magnitude events (repre-
sented by Rp), climate projections (RCPs — GCMs), and demand
variability scenarios (SD - NSD). The curve set represents the
uncertainty associated with the drivers considered. Each pair of
lines in Figure 8 (continuous and dashed lines) shows the range
of possible impacts generated by water scarcity across demand
scenarios.

4.3. Water utility company impacts

The results here describe the net present value (NPV) of the
potential economic impacts represented in SABESP revenue
losses related to hydrological drought durations greater than
180 days. The set of impacts was organized by differentiating
results from climate projections, demand scenarios, drought
severity (accumulated deficit), and recurrence scenarios during
the analyzed periods: 2007-2040, 2041-2070, and 2071-2099.
The evaluation of the drought’s economic impact projections in
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Figure 6. TLM approach from historical WEAP’s simulation driven by RCM Eta (base line scenarios) under Stationary (SD) and Non-Stationary Demand (NSD) threshold
assumptions: a. 31 m3/s and Eta-MIROCS. b. 31 m3/s and Eta-HadGEM-ES. c. 31 to 42 m3/s and Eta-MIROCS. d. 31 to 42 m3/s and Eta-HadGEM-ES.
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SABESP showed, in general, revenue losses per analysis period
between 0.003% and 0.021% of the SPMR GDP in 2017. This
relatively low range of percentage revenue losses is, in fact,
significant for the regional economy, since SPMR accounts for
approximately 18% of the Brazilian GPD.

The results in Figure 9 show that under the water demand
driver, the most conducive scenarios are configured to gener-
ate the greatest impacts on average. This was expected, given
the proposed non-stationary threshold demand. In descending
order, the lowest economic impacts on average were observed
under RCP and GCM drivers, respectively. Likewise, in Panel ‘a’,
the impacts analyzed under RCP scenarios 4.5 and 8.5 showed a
low difference percentage in variability and median. This can be
explained by the study by Chou et al. (2014a), where the Eta-
INPE results establish that, in the future, there is no clear trend
in the average precipitation. During the summer, the time
series show a trend for a reduction in precipitation in both
emission scenarios, RCP 8.5 and 4.5. For Panel ‘b’ (RCM), the
outputs nested in Eta-MIROC5 presented higher revenue losses
in the company than those based on Eta-HadGEM-ES. This
difference can be attributed to the annual cycle of precipita-
tion, which shows that the Eta-INPE simulations driven by
MIROC5 generally produce less precipitation during the dry
season; therefore, the water deficit during this period will be

more critical (Chou, Lyra, Mourao, Dereczynski, Pilotto, Gomes,
Bustamante, Tavares, Silva, Rodrigues, Campos, Chagas, Sueiro,
Siqueira, Nobre, et al. 2014b). Finally, Panel ‘c’, where the NSD
trend imposed the larger differences in the magnitude and
variability percentage impacts (human influences), suggesting
that the demand-related (population growth) uncertainty
might be comparable to or larger than that associated with
climate sensitivity.

Under a different grouping configuration for the analysis of
the results (see Figure 9), the impact assessment was condi-
tioned by the scenario joint study of climate forcing (Eta-GCM)
and radiation (RCP). Based on this scheme, it was found that the
largest economic impact was represented by the Eta-
MIROC5_4.5 climate-forcing scenario, while smaller impacts
(on average) were observed in the Eta-HadGEM-ES_4.5 sce-
nario. In addition, the Eta-MIROC5 scenario showed the max-
imum values of the median 50" percentile (Max.-Med.) and
standard deviation (Max.SD) between the set of period panels,
which concludes that climate forcing based on the MIROC5
model is the main driver of the impacts and variability between
analyzed climate drivers (GCM).

In all cases, the average impact projected for the period
2041-2070 was the lowest across periods. According to a
study by Lyra et al. (2017), in which the most recent Eta-INPE
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Figure 9. Economic impacts comparison between Eta-INPE_RCP_GCM based scenarios throughout the projection time periods: first panel 2007-2040, second panel

2041-2070 and third panel 2071-2099.

model simulations were performed at more detailed scales, the
annual total precipitation (PRCPTOT) and maximum number of
consecutive days with precipitation (CDD-CWD) indices for the
Séo Paulo region showed better results in terms of favoring

water availability during this period. On the contrary, the period
2007-2040 presented the greatest impacts (evidence of the
recent water crisis) and the lowest dispersion (less uncertainty).
The 2071-2099 projection showed impacts similar to the 2007-



2040 period, given that both Eta-INPE simulations intensify the
reduction of precipitation toward the end of the century in
Southeast Brazil, with an annual rainfall reduction above 40%
and a reduction in precipitation extremes (Lyra et al. 2017;
Chou et al. 2014a).

In this work, we have addressed the WUBIC to hydrological
droughts and its association with multiple drivers, such as
climate change and water demand. Nonetheless, previous
works have shown the economic risk of hydrological drought
for other user sectors (Guzman, Mohor, and Mendiondo 2020),
such as industrial, domestic, agricultural, and environmental
(Mohor and Mendiondo 2017), and its effect on the design of
insurance instruments. The results therein show that the drivers
of change coupled with the national normative, which estab-
lishes the sectorial priority of supply, can lead to high losses in
the SPMR, especially in the industrial sector (Guzman, Mohor,
and Mendiondo 2020). Fair insurance premiums to cope with
drought financial impacts can surpass 0.4% of local GDP
(Guzman 2018), showing that both the water utility company
and its users are vulnerable to water insecurity and consequent
impacts.

4.4. Considerations on uncertainties

The methodology adopted here includes a model chain, which
is typical for hydrological regime projection exercises through
hydrologic simulation under climate change projections (Jones
2000; Wilby and Harris 2006; Fowler, Blenkinsop, and Tebladi
2007; Hoque et al. 2019). This model chain incorporates several
sources of uncertainty, such as those listed by Honti,
Scheidegger, and Stamm (2014) and Jobst et al. (2018), 1) the
climate model; 2) the downscaling method or an RCM applica-
tion, the latter as in our work; 3) the hydrological model; and (4)
the inherent modeling uncertainty of coupling different cli-
mate-hydrology spatiotemporal scales.

In this case, the systematic analysis of change drivers (uncer-
tainty sources) offers a set of results around potential scenarios
to frame uncertainty (Refsgaard et al. 2007; Rodrigues et al.
2015), while the driver sensitivity analysis is proposed as a
part of the results of this study. Montanari (2007), however,
advocates that some methods commonly used for uncertainty
assessment do not address uncertainty, but only model sensi-
tivity. Moreover, although some studies indicate that climate
projections surpass hydrological uncertainties (Bates et al.
2008; Nobrega et al. 2011), Honti, Scheidegger, and Stamm
(2014) reinforce that different methods of uncertainty assess-
ment may lead to different conclusions. The uncertainty asso-
ciated with the drivers of change is represented in cost terms
(WUBIC) by period (2018-2040, 2041-2070, and 2071-2099)
around 9,206 US $ x10° 8,616 US $ x10° and 11,975 US $
x10°, respectively.

Our methodology also included a drought indicator devel-
opment through the TLM approach, demand scenarios, and a
drought cost estimation based on the market price method
(Mens, Gilroy, and Williams 2015; Hou et al. 2018). The results
showed that drought deficits are influenced not only by the
modeled inflows at a lumped scale, throughout the period-
2007-2099, but also in our case study by reservoir operation. In
fact, the spatially combined operation of existing reservoirs
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may be different from our considerations, adopting an ‘equiva-
lent system’ (ES) without a future layout change. On the one
hand, the system demand scenarios are based on the best
current knowledge (historical period: 2004-2016, (SABESP
2017b)) and the adoption of two scenarios aimed at providing
a broader, realistic view of the different possible outcomes due
to expected population growth (Hou et al. 2018). On the other
hand, economic loss estimation, based on the aforementioned
drought event measures, does not incorporate eventual market
changes, currency changes, or even subsidies. Conversely, our
loss estimation assumes that those economic measures, that is,
water tariff adjustments, were and would continue to be
adopted by the water utility, as a trigger determinant once
the drought hazard occurred. Because this triggering factor
would temporarily occur either promptly or slowly, when struc-
tural measures were not sufficient to secure water supply under
eventual hydro-meteorological conditions and water demand,
uncertainties in cost analysis could increase.

5. Conclusion and recommendations

In this paper, we presented a multi-driver ensemble to assess
the economic impacts of water utility triggered by climate
change and demand variability. Methodologically, we first char-
acterized hydrological droughts through the SDF curves from
the baseline period. Second, an empirical drought economic
impact curve was set up, representing the water utility com-
pany profit loss due to unmet demand during hydrological
drought periods coupled with tariff adjustments through the
SWTI developed here. Additionally, our results have further
implications for drought risk reduction and management.

The implemented methodology revealed SPMR water inse-
curity against hydrological droughts. It is possible that the max-
imum supply capacity of the system is reaching its limit owing to
the growing demand and the new challenges represented by
climate change. On the one hand, the main driver of economic
impacts turned out to be water demand dynamics. In contrast,
the radiation scenarios showed no major differences. The scenar-
ios analyzed here do not comprise the full variability of climate
projections, and the two GCMs were shown to be a large source
of uncertainty. Thus, a larger number of GCMs are highly recom-
mended. However, the water demand scenario, which is aligned
with population growth estimates and is comparatively less
uncertain, directly leads to an increase in drought impacts.

The approach presented here could be expanded to ana-
lyze the impacts of key drivers such as land use and link
interdisciplinary studies with broader relationships in relation
to water, energy, and food security. The inclusion of more
gauge stations could not only improve the calibration perfor-
mance but also cover a larger sample space of events,
increasing the confidence of projections. Similarly, the relia-
bility of SDF curve estimates depends on the quality and
extent of the records used, or in this case, the capacity of
RCMs to reproduce the distribution of extreme events. The
methodology assimilates consecutive years of water deficit
independently. Nonetheless, introducing a direct measure of
the economic impacts resulting from a multi-year drought
event could improve the estimates. Drivers such as demand
variability indicate an important uncertainty to financial
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resilience; for example, recent reductions in water demand in
commercial, industrial, and institutional sectors, due to the
pandemic, generated a reduction in the income of water
companies. The scenarios analyzed here can assist the deci-
sion-making of water utility companies to cope with the
economic impacts of drought risks in the long and medium
term. The expected profit loss over the long term serves as
the initial estimate for financial contingency arrangements
such as insurance schemes or community contingency
funds. In general, the approach developed here can be pro-
posed as a planning tool to mitigate drought-related revenue
losses, as well as being useful for the development of water
resource securitization strategies in sectors highly dependent
on water.

Notes

1. https://www.snirh.gov.br/hidroweb/apresentacao.

2. Brazilian Institute of Geography and Statistics: http://www.ibge.gov.
br/home/.

3. Database ‘percentage rate increase’ 2001-2018 SABESP: http://
www.sabesp.com.br/CalandraWeb/CalandraRedirect.
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